A note on convex relaxations for the inverse eigenvalue problem

نویسندگان

چکیده

The affine inverse eigenvalue problem consists of identifying a real symmetric matrix with prescribed set eigenvalues in an space. Due to its ubiquity applications, various instances the have been widely studied literature. Previous algorithmic solutions were typically nonconvex heuristics and often developed case-by-case manner for specific structured spaces. In this short note we describe general family convex relaxations by reformulating it as question checking feasibility system polynomial equations, then leveraging tools from optimization literature obtain semidefinite programming relaxations. Our equations may be viewed matricial analog reformulations 0/1 combinatorial problems, which extensively investigated. We illustrate numerically utility our approach stylized examples that are drawn applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Note on the Symmetric Recursive Inverse Eigenvalue Problem

In [1] the recursive inverse eigenvalue problem for matrices was introduced. In this paper we examine an open problem on the existence of symmetric positive semidefinite solutions that was posed there. We first give several counterexamples for the general case and then characterize under which further assumptions the conjecture is valid. 1. Introduction. In [1] several classes of recursive inve...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

A Note on Polyhedral Relaxations for the Maximum Cut Problem

We consider three well-studied polyhedral relaxations for the maximum cut problem: the metric polytope of the complete graph, the metric polytope of a general graph, and the relaxation of the bipartite subgraph polytope. The metric polytope of the complete graph can be described with a polynomial number of inequalities, while the latter two may require exponentially many constraints. We give an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Letters

سال: 2021

ISSN: ['1862-4480', '1862-4472']

DOI: https://doi.org/10.1007/s11590-021-01708-1